Insights into Antiparallel Microtubule Crosslinking by PRC1, a Conserved Nonmotor Microtubule Binding Protein

نویسندگان

  • Radhika Subramanian
  • Elizabeth M. Wilson-Kubalek
  • Christopher P. Arthur
  • Matthew J. Bick
  • Elizabeth A. Campbell
  • Seth A. Darst
  • Ronald A. Milligan
  • Tarun M. Kapoor
چکیده

Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks are compliant and do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish crosslinks that selectively "mark" antiparallel overlap in dynamic cytoskeletal networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonmotor Microtubule Binding Site in Kinesin-5 Is Required for Filament Crosslinking and Sliding

Kinesin-5, a widely conserved motor protein required for assembly of the bipolar mitotic spindle in eukaryotes, forms homotetramers with two pairs of motor domains positioned at opposite ends of a dumbbell-shaped molecule [1-3]. It has long been assumed that this configuration of motor domains is the basis of kinesin-5's ability to drive relative sliding of microtubules [2, 4, 5]. Recently, it ...

متن کامل

A Minimal Midzone Protein Module Controls Formation and Length of Antiparallel Microtubule Overlaps

During cell division, microtubules are arranged in a large bipolar structure, the mitotic spindle, to segregate the duplicated chromosomes. Antiparallel microtubule overlaps in the spindle center are essential for establishing bipolarity and maintaining spindle stability throughout mitosis. In anaphase, this antiparallel microtubule array is tightly bundled forming the midzone, which serves as ...

متن کامل

Microtubule organization by kinesin motors and microtubule crosslinking protein MAP65.

Microtubules are rigid, proteinaceous filaments required to organize and rearrange the interior of cells. They organize space by two mechanisms, including acting as the tracks for long-distance cargo transporters, such as kinesin-1, and by forming a network that supports the shape of the cell. The microtubule network is composed of microtubules and a bevy of associated proteins and enzymes that...

متن کامل

Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast.

Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions i...

متن کامل

Asymmetric Friction of Nonmotor MAPs Can Lead to Their Directional Motion in Active Microtubule Networks

Diverse cellular processes require microtubules to be organized into distinct structures, such as asters or bundles. Within these dynamic motifs, microtubule-associated proteins (MAPs) are frequently under load, but how force modulates these proteins' function is poorly understood. Here, we combine optical trapping with TIRF-based microscopy to measure the force dependence of microtubule intera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2010